A shape theorem and a variational formula for the quenched Lyapunov exponent of random walk in a random potential
نویسندگان
چکیده
Nous prouvons un théorème de forme et déduisons une formule variationnelle pour l’exposant Lyapunov la fonction Green marche aléatoire dans potentiel sur réseau carré dimension arbitraire avec ensemble fini des pas possibles. Le est d’un environnement stationnaire du marche. Ce soumis à hypothèse les moments qui liée vitesse mélange milieu. Notre cadre comprend modèles polymères dirigés non dirigés, statique dynamique, et, le cas température nulle, nos résultats donnent également constante temps percolation dernier passage dirigée par site arête premier standard.
منابع مشابه
Lyapunov exponents, shape theorems and large deviations for the random walk in random potential
We consider the simple random walk on Z evolving in a potential of independent and identically distributed random variables taking values in [0,+∞]. We give optimal conditions for the existence of the quenched point-to-point Lyapunov exponent, and for different versions of a shape theorem. The method of proof applies as well to first-passage percolation, and builds up on an approach of Cox and ...
متن کاملQuenched Large Deviations for Random Walk in a Random Environment
We take the point of view of a particle performing random walk with bounded jumps on Z in a stationary and ergodic random environment. We prove the quenched large deviation principle (LDP) for the pair empirical measure of the environment Markov chain. By an appropriate contraction, we deduce the quenched LDP for the mean velocity of the particle and obtain a variational formula for the corresp...
متن کاملA Random Walk with Exponential Travel Times
Consider the random walk among N places with N(N - 1)/2 transports. We attach an exponential random variable Xij to each transport between places Pi and Pj and take these random variables mutually independent. If transports are possible or impossible independently with probability p and 1-p, respectively, then we give a lower bound for the distribution function of the smallest path at point log...
متن کاملCentral Limit Theorem in Multitype Branching Random Walk
A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.
متن کاملThe parabolic Anderson model in a dynamic random environment: basic properties of the quenched Lyapunov exponent
In this paper we study the parabolic Anderson equation ∂u(x, t)/∂t = κ∆u(x, t) + ξ(x, t)u(x, t), x ∈ Z, t ≥ 0, where the u-field and the ξ-field are R-valued, κ ∈ [0,∞) is the diffusion constant, and ∆ is the discrete Laplacian. The ξ-field plays the role of a dynamic random environment that drives the equation. The initial condition u(x, 0) = u0(x), x ∈ Z, is taken to be non-negative and bound...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'I.H.P
سال: 2022
ISSN: ['0246-0203', '1778-7017']
DOI: https://doi.org/10.1214/21-aihp1200